Lecture 4: Labour economics

Spring 2010

Lars Calmfors

The monopsony model

- Barriers to free entry of firms
- Limited mobility of labour
- A monopsonist can hold down wages below the competitive wage

Examples

- Single-firm towns ("bruksorter")
- The labour-market for nurses
 - just one hospital in a region
 - cartel of regions ("landsting") earlier in Sweden

The basic monopsony model

- Labour supply $L^{s}(w) = G(w)$
- An employed person produces y

Decision problem of a monopsonist

$$\begin{aligned} \max_{w} \quad \pi(w) &= L^{s}(w)(y - w) \\ L^{s}_{1}(y - w) - L^{s} &= 0 \end{aligned}$$

$$\frac{L_1}{L^s} w(\frac{y}{w} - 1) - 1 = 0$$

Define
$$\frac{\partial L^s}{\partial w} \cdot \frac{w}{L_s} = \eta_w^L$$
 = the elasticity of labour supply

Hence:

$$\eta_{w}^{L} \left[\frac{y}{w} - 1 \right] - 1 = 0$$

$$w = \frac{\eta_{w}^{L}}{\eta_{w}^{L} + 1} y$$

$$\frac{\eta_{w}^{L}}{\eta_{w}^{L} + 1} < 1 \text{ implies that } w < y, \text{ i.e. that the monopsonist}$$

sets a lower wage than the competitive wage

The monopsonistic wage coincides with the competitive wage only if $\eta_w^L \to \infty$ in which case

$$w = \frac{\eta_w^L}{\eta_w^L + 1} = \frac{1}{1 + \frac{1}{\eta_w^L}} \quad y \to y$$

- Otherwise the monopsonist gains by lowering the wage below the competitive wage
- This reduces the labour supply and hence output and employment. But the loss from this is outweighed by the savings on the wage bill.

Isoprofit curve

$$\pi = L(y - w) = \overline{\pi}$$

$$dL(y - w) - Ldw = 0$$

$$\frac{dL}{dw} = \frac{L}{y - w} \qquad \frac{dL}{dw} > 0 \text{ for } y > w$$

Profit maximisation at the tangency point between an isoprofit curve and the labour supply schedule

- A minimum wage if it is not too high raises both the wage and employment in a monopsonistic market
- Non-monotonic relationship between minimum wage and employment in a monopsonistic market

FIGURE 5.4 The monopsony model.

Sources of monopsony power

- Workers must have limited mobility
 - transportation cost
 - qualifications that cannot be used elsewhere
- Entry costs must prevent entry of competitors

<u>Simple game-theoretic model for why the existence of entry</u> <u>costs can uphold a monopsony</u>

N firms can enter c is the entry cost Each worker produces y

Stage 1: entry decision Stage 2: wage decision

- Solve the model backwards
- If only one firm it sets the monopsony wage
 If there are n > 1 competitors, firm i sets its wage w_i so as to maximise its profit

 $\pi_i = L_i$ (y-w_i) taking the wages of other firms as given

Employment L_i in firm *i* depends on all wages (w_i, \ldots, w_n) in the following way:

$$L_i = L^s(w_i)$$
 if $w_i > w_j$, $\forall j \neq i$

 $L_i = (1/J)L^s(w_i)$ if *i* sets the highest wage together with *J*-1 other firms, 1 < J < n

- $L_i = 0$ if there exists one firm $j \neq i$ which sets $w_i < w_j$
- All wages equal to y is a Nash equilibrium
- Then each firm has zero profits and cannot improve its profits
 - with a lower wage all labour disappears
 - with a higher wage it makes a loss
- No single firm can set $w_i < y$.
 - it would then make a profit
 - hence it would pay for a competitor to raise the wage above *w_i* and capture the whole labour supply
 - This is so-called <u>Bertrand competition</u>, which forces the wage up to the competitive level

Stage 1 decision

- Each firm knows that
 - (i) it will make zero profits with competitors present in the market
 - (ii) it will make monopsony profits if it alone enters
- Once a firm has entered it does not pay for any other firm to enter
 - profits will be zero
 - but an entry cost *c* has to be paid
 - the first firm (if possibilities to enter come sequentially) chooses to enter if $\pi(w^M) > c$.
- Extreme assumptions here regarding Bertrand competition but good illustration of how entry costs may give rise to monopsony and wage differences to other sectors unrelated to productivity.

Collective bargaining

- Common assumption for unions: identical members
- N identical members in the union's "labour pool"
- Indirect utility function for the individual, increasing in income
- Every member supplies one unit of labour if the real wage w exceeds the reservation wage \overline{w} (= income of an unemployed person)
- L = Labour demand
- Same probability of getting a job for every union member = L/N if L < N and unity if $L \ge N$

• Probability of unemployment $(1 - \frac{L}{N})$ if L < N and zero if $L \ge N$.

Union objective

Maximise the expected utility of members

$$\nu_s = l\nu(w) + (1-l)\nu(\overline{w}) \qquad l = \operatorname{Min}(1, L/N)$$

If N is exogenous, this is equivalent to maximising the unweighted sum of members' utilities:

$$L\nu(w) + (N-L)\nu(\overline{w})$$

If workers are risk-neutral so that $\nu(w) = w$ and $\nu(\overline{w}) = \overline{w}$, unions maximise the rent from unionisation:

 $lw + (1-l)(\overline{w}) = l(w-\overline{w}) + \overline{w}$

If $\overline{w} = 0$, this is equivalent to maximising the wage bill: *lw*

	Total economy (2001)		Market sector (mid 1990s)	
Country	Coverage	Unioni . sation	Coverage	Unioni- sation
Old EU member states				
Austria	98	40	97	34
Belgium	100	69	82	44
Denmark	85	88	52	68
Finland	90	79	67	65
France	90	9	75	< 4
Germany	67	30	80	25
Greece	· · ·	32		20
Ireland		52		43
Italy		35		36
Luvemburg	60	50		50
Netherlands	78	27	70	10
Portugal	62	30	80	- 20
Spain	81	15	67	< 15
Sweden	04	70	72	77
LIK _{p)}	36	20	35	10
UK .	50	29	55	17
New EU member states				
Cyprus	65-70	70		
Czech Republic	25-30	30		
Estonia	29	15		
Hungary	34	20		
Latvia	< 20	30		
Lithuania	10-15	15		
Malta	60-70	65		
Poland	40	15		
Slovakia	48	40		
Slovenia	100	41		
Other countries				
Australia	22 (23)°)	23		
Canada	32	30 ^{g)}	1	
Japan	21	22 ^{h)}	21	24
New Zealand	45 ^{d)}	22		
Norway	70-77°)	55 ^{h)}	62	44
Switzerland	53 ⁰	23 ^{h)}	50	22
US	15	14 ^{h)}	13	10
Notes: a) Coverage refers	to the percenta	age of employ	vees covered by c	collective
agreements and unionisa	tion to the perce	entage of en	ployees with uni	on mem-

EEAG Report 2004

Chapter 3

Table 3.2

Bargaining levels						
Country	National guidelines	Inter- sectoral level	Sectoral level	Enterpris level		
Old EU member states						
Austria	Pattern bargaining		XXX	x		
Belgium	Centrally agreed guidelines for wage increases with the government 2003-04	XXX	х	х		
Denmark	Pattern bargaining	XX	XX	x		
Finland	Tripartite national pay agreement 2003-04	XXX	XX	X		
France			X	XX		
Germany	Pattern bargaining		XXX	X		
Greece	National general collective agreement 2002-03	XX	XXX	х		
Ireland	Tripartite national pay agreement 2003-04	XXX	х	х		
Italy	Social pacts with government 1993 and 1998 setting guidelines for the wage-bargaining process		XX	х		
Luxemburg			XX	XX		
Netherlands	Centrally agreed ceiling for wage increases with government 2003; tripartite national wage freeze 2004-05	xx	XXX	х		
Portugal			XXX	х		
Spain	Centrally agreed guidelines for wage increases 2003	XX	XXX	х		
Sweden	Intersectoral agreements setting guidelines for the wage-bargaining process: pattern bargaining		XXX	xx		
UK			х	XXX		
New EU member states						
Cyprus Czech Republic	Tripartite national agreements on minimum wages		xxx x	xxx		
Estonia	Tripartite national agreements on minimum wages		х	XXX		
Hungary	National guidelines for wage increases agreed with government and tripartite national agreements on minimum wages	х	XX	XXX		
Latvia	Tripartite national agreements on minimum wages	х	х	XXX		
Lithuania	· · · · · · · · · · · · · · · · · · ·		X	XXX		
Malta				XXX		
Poland	National guidelines for wage increases agreed with government and tripartite national agreements on		х	XXX		
Slovakia	Tripartite pational agreements on minimum wages		xx	x		
Slovenia	Tripartite national agreenents on infinitum wages	XXX	xx	x		
Other countries						
Australia	National wage awards for minimum wages	x	XX	XXX		
Japan	Pattern bargaining		761	XXX		
New Zealand			x	XXX		
Norway	Pattern bargaining: tripartite agreement on guidelines for wage increases 2003	XX	XXX	х		
Switzerland US			х	- XX - XXX		
Notes: XXX = dominatin	g level					
XX = important	, but not dominating, level					
X = existing le	vel					
Sources: Industrial Relati	ons in the EU Member States and Candidate Countries (20	02), Collective	Bargaining Cov	verage and		
Extension Procedures (20	02), individual Eiroline country reports. For New Zealan	d: Bray and Wa	lsh (1998).			

EEAG Report

n Procedures (2002), individual Eiroline country rep sh (1998).

- Assumption of identical union members is convenient and has microeconomic underpinnings
- But in reality members are heterogeneous
- Restrictive assumptions necessary for collective decisionmaking
 - majority decisions
 - sincere voting: no attempts to influence voting by announcing intentions beforehand
 - voting on a single question
 - single-peaked preferences
 - then the median-voter theorem can be applied
- Restrictive assumption for union decision-making - voting only about the wage
- Conflicts between union leadership and membership - leadership may want to maximise union size
 - union size may increase with employment
 - boss-dominated unions show more wage restraint

Empirical studies of union goals

Stone-Geary utility function

$$\nu_{s} = (w - w_{0})^{\theta} (L - L_{0})^{1 - \theta} \qquad \theta \in [0, 1]$$

Special cases

 $\theta = \frac{1}{2}, w_0 = 0, L_0 = 0 \Rightarrow$ wage bill maximisation

 $\theta = \frac{1}{2}, w_0 = \overline{W}, L_0 = 0 \Rightarrow$ rent maximisation

Pencavel (1984) used Stone-Geary utility function

Decision problem

$$\begin{aligned} & \underset{w}{\text{Max}} \quad \nu_{s} = (w - w_{0})^{\theta} (L - L_{0})^{1 - \theta} \\ & \text{s.t.} \quad L = \alpha_{0} + \alpha_{1} (w / r_{1}) + \alpha_{2} (r_{2} / r_{1}) + \alpha_{3} x + \alpha_{4} D \end{aligned}$$

r₁ = output price r₂ = production cost x = output D = Dummy variable

<u>FOC</u>:

$$\frac{\theta}{\theta - 1} = \frac{\alpha_1 (w - w_0)}{r_1 (L - L_0)}$$

Estimation of labour demand function and FOC gives estimates of θ , w_0 , L_0 , α_0 , α_1 , α_2 , α_3 and α_4 .

- Not rent or wage bill maximisation
- Different θ , but tendency for θ to be low
- w_0 and L_0 increase with the size of the union

Carruth and Oswald (1985)

- Rejection of risk neutrality (and wage bill and rent maximisation)
- CRRA = $-w\nu''(w) / \nu'(w) \approx 0.8$
- Risk neutrality implies $-w\nu''(w)/\nu'(w) = -w \cdot 0/1 = 0$

•
$$\frac{w^{1-\delta}}{1-\delta}$$
; δ is CRRA

Standard right-to-manage model

- Bargaining about wages
- Employer determines employment unilaterally

Union objective

$$\nu_s = l\nu(w) + (1-l)\nu(\overline{w}) \qquad l = \operatorname{Min}(1, L/N)$$

<u>Firm profit</u>

$$\pi = R(L) - wL \qquad R' > 0, R'' < 0$$

Labour demand from profit maximisation

$$\frac{\partial \pi}{\partial L} = R'(L) - w = 0$$
$$w = R'(L)$$
$$L^{d}(w) = R'^{(-1)}(w)$$

In case of disagreement

- Workers get the utility of unemployed persons
- Firms get zero profit
- γ denotes relative bargaining strength of the union: 0 < γ < 1

Apply Nash bargaining solution

$$\max_{w} (\nu_{s} - \nu_{0})^{\gamma} (\pi - \pi_{0})^{1-\gamma}$$

$$\pi_0$$
 = Profit in case of disagreement
 ν_0 = union utility in case of disagreement

$$\pi_{0} = 0$$

$$\nu_{0} = \ell \nu(\overline{w}) + (1 - \ell)\nu(\overline{w}) = \nu(\overline{w})$$

$$\nu_{s} - \nu_{0} = \ell \nu(w) + (1 - \ell)\nu(\overline{w}) - \nu(\overline{w}) = \ell(\nu(w) - \nu(\overline{w})) =$$

$$= \frac{L^{d}}{N} [\nu(w) - \nu(\overline{w})]$$

$$\begin{aligned} & \underset{w}{\operatorname{Max}} \quad \left[L^{\scriptscriptstyle D}(w) \right]^{\scriptscriptstyle \gamma} \left[\nu(w) - \nu(\overline{w}) \right]^{\scriptscriptstyle \gamma} \left[\pi(w) \right]^{\scriptscriptstyle 1-\gamma} \\ & \text{with} \quad \pi(w) = R \left[L^{\scriptscriptstyle D}(w) \right] - w L^{\scriptscriptstyle d}(w) \\ & \text{s.t.} \quad L^{\scriptscriptstyle d}(w) \leq N \text{ and } w \geq \overline{w} \end{aligned}$$

Solve by taking logs and then differentiate w.r.t. *w*

$$\frac{FOC}{L^{d}(w)} \frac{dL^{d}(w)}{dw} + \frac{\gamma \nu'(w)}{\nu(w) - \nu(\overline{w})} + \frac{(1 - \gamma)}{\pi(w)} \frac{d\pi(w)}{dw} = 0$$

Note: Mistake in formula on page 394:

Second term should be

$$\frac{\gamma\nu'(w)}{\nu(w) - \nu(\overline{w})}$$

not

$$\frac{\gamma w \nu'(w)}{\nu(w) - \nu(\overline{w})}$$

Let
$$\eta_w^L = -(w/L)(dL/dw)$$

 $\eta_w^\pi = -(w/\pi)(d\pi/dw)$

Absolute values of wage elasticities of labour demand and profits

Posit
$$\eta_{w}^{L} = \eta_{w}^{L}(w, z_{L})$$
 $\partial \eta_{w}^{L} / \partial_{L}^{z} > 0$

$$\eta_{w}^{\pi} = \eta_{w}^{\pi}(w, z_{\pi}) \qquad \partial \eta_{w}^{\pi} / \partial_{\pi}^{z} > 0$$

$$\phi(w,\overline{w},z_{L},z_{\pi},\gamma) = -\gamma \eta_{w}^{L} - (1-\gamma)\eta_{w}^{\pi} + \frac{\gamma w\nu'(w)}{\nu(w) - \nu(\overline{w})} = 0$$
(1) (2) (3)

- (1) Employment loss from wage increase
- (2) **Profit loss from wage increase**
- (3) Income gain for employed workers from wage increase

Monopoly union assumption

$$\gamma = 1 \Rightarrow \eta_w^L + \frac{w\nu'(w)}{\nu(w) - \nu(\overline{w})} = 0$$

- Still interior solution
- Trade union balances income gain for employed workers against employment loss from wage increase

SOC for a maximum is $\phi_{_{\scriptscriptstyle W}} < 0$

$$x = (\overline{w}, z_{L}, z_{\pi}, \gamma)$$

$$\phi_{w} dw + \phi_{x} dx = 0$$

$$\frac{dw}{dx} = -\frac{\phi_{x}}{\phi_{w}}$$

$$dw$$

$$\phi_{w} < 0 \Rightarrow \operatorname{sgn} \frac{dw}{dx} = \operatorname{sgn} \phi_{x}$$

$$\phi_{\gamma} = -\eta_{w}^{L} + \eta_{w}^{\pi} + \frac{w\nu'(w)}{\nu(w) - \nu(\overline{w})}$$

From FOC we can derive:

$$-\eta_{w}^{L} + \frac{w\nu'(w)}{\nu(w) - \nu(\overline{w})} = \frac{1 - \gamma}{\gamma} \eta_{w}^{\pi}$$

Substitution into expression for ϕ_γ gives

$$egin{array}{rcl} \phi_{\gamma} &=& \eta^{\pi}_{w} \;+\; rac{1-\gamma}{\gamma}\eta^{\pi}_{w} \;=\; rac{\eta^{\pi}_{w}}{\gamma} \;>\; 0 \ & \ dots rac{dw}{d\gamma} \;>\; 0 \end{array}$$

• Larger union bargaining power raises the wage

$$\phi_{\overline{w}} = \frac{\gamma w \nu'(w)}{\left[\nu(w) - \nu(\overline{w})\right]^2} \cdot \frac{\partial \nu}{\partial \overline{w}} > 0$$

• An income increase for a jobless person raises the wage

$$\phi_{\eta^L_w} = -\gamma < 0$$

• An increase in the labour demand elasticity lowers the wage

$$\phi_{\eta^{\pi}_{w}} = -(1-\gamma) < 0$$

• An increase in the profit elasticity lowers the wage

<u>Rewrite FOC</u>:

$$\frac{\nu(w) - \nu(\overline{w})}{w\nu'(w)} = \frac{\gamma}{\gamma \eta_w^L + (1 - \gamma) \eta_w^\pi} \equiv \mu_s$$

No bargaining power for union: $\gamma = 0$

Hence:
$$\nu(w) = \nu(\overline{w})$$

 $w = \overline{w}$

• Employed workers only get a wage equal to the income of the unemployed

<u>No bargaining power for the employer:</u> $\gamma = 1$

$$\frac{\nu(w) - \nu(\overline{w})}{w\nu'(w)} = \frac{1}{\eta_w^L}$$

• The mark-up factor only depends on the elasticity of labour demand.

Union indifference curves in w, L-space

$$\overline{U} = L[\nu(w) - \nu(\overline{w})]$$

$$0 = L\nu'(w)dw + dL[\nu(w) - \nu(\overline{w})]$$

$$\frac{dw}{dL} = \left| \frac{1}{U = const} \right|_{u=const} = -\frac{\left[\nu(w) - \nu(\overline{w}) \right]}{L\nu'(w)} \leq 0$$

$$\frac{d^2 w}{dL^2} = \left| \frac{1}{U = const} \right|_{L^2 = const} = \frac{\left[\nu(w) - \nu(\overline{w}) \right]}{\left[L^2 \left[\nu'(w) \right]^2 \right]} \left\{ 2\nu'(w) - \nu''(w) \frac{\left[\nu(w) - \nu(\overline{w}) \right]}{\nu'(w)} \right\} \ge 0$$

Union indifference curves are negatively sloped and convex.

Isoprofit curves

$$\overline{\pi} = R(L) - wL$$

$$R'(L)dL - wdL - Ldw = 0$$

$$\frac{dw}{dL} \bigg|_{\pi = \overline{\pi}} = \frac{R'(L) - w}{L}$$

$$d\left[\frac{dw}{dL}\Big|_{\pi=\overline{\pi}}\right] = \frac{L[R''(L)dL - dw] - dL[R'(L) - w]}{L^2} =$$

$$\frac{d^2 w}{dL^2} \Big|_{\pi = \overline{\pi}} = \frac{LR''(L)}{L^2} - \frac{\frac{dw}{dL}}{L^2} - \frac{[R'(L) - w]}{L^2}$$

Substitute
$$\frac{R'(L) - w}{L}$$
 for $\frac{dw}{dL}$:

$$\frac{d^{2}w}{dL^{2}}\Big|_{\pi=\overline{\pi}} = \frac{LR''(L)}{L^{2}} - \frac{R'(L) - w}{L^{2}} - \frac{R'(L) - w}{L_{2}}$$

$$= \frac{LR''(L) - 2[R'(L) - w]}{L^2}$$

- Choosing *L* to maximise profit implies R'(*L*) = *w*. Hence isoprofit curve is horizontal where it intersects the labour demand schedule.
- At intersection with labour demand schedule, R'(L) = w.

Hence
$$\frac{d^2 w}{dL^2}\Big|_{\pi=\overline{\pi}} = \frac{R''(L)}{L} < 0.$$

Isoprofit curves are concave there, which imply maxima.

General FOC:

$$-\gamma \eta_{w}^{L} - (1-\lambda)\eta_{w}^{\pi} + \frac{\gamma w \nu'(w)}{\nu(w) - \nu(\overline{w})} = 0$$
 (A)

- If η^L_w, η^π_w, γ and w̄ are constants, then the real wage w is constant as well. It will not be affected by an iso-elastic shift of the labour demand schedule (for example because of a productivity shock).
- Constant η_w^L and η_w^{π} will occur if the revenue function is Cobb-Douglas.

Simplified model

$$\pi = R(L) - wL = \frac{AL^{\alpha}}{\alpha} - wL \qquad \alpha \in (0, 1)$$

Profit maximisation gives:

$$\frac{\partial \pi}{\partial L} = AL^{\alpha-1} - w = 0$$
$$L = \left(\frac{w}{A}\right)^{\frac{1}{\alpha-1}}$$

Then:

$$\pi = \frac{A}{\alpha} \cdot \left(\frac{w}{A}\right)^{\frac{\alpha}{\alpha-1}} - w \cdot \left(\frac{w}{A}\right)^{\frac{1}{\alpha-1}}$$

$$\pi = w^{\frac{\alpha}{\alpha-1}} \cdot \frac{1-\alpha}{\alpha} A^{\frac{1}{\alpha-1}}$$

Hence:

$$\eta_{w}^{L} = -\frac{\partial L}{\partial w} \cdot \frac{L}{w} = \frac{1}{1-\alpha}$$

$$\eta_{w}^{\pi} = -\frac{\partial L}{\partial w} \cdot \frac{w}{\pi} = \frac{\alpha}{1-\alpha}$$

Also assume that $\nu(w) = w$ and $\nu(\overline{w}) = \overline{w}$ Then $\nu'(w) = 1$

FOC (A) then becomes:

$$-\gamma \cdot \frac{1}{1-\alpha} - (1-\gamma)\frac{\alpha}{1-\alpha} + \frac{\gamma w}{w-\overline{w}} = 0$$

Solving for *w* gives:

$$w = \frac{\gamma + \alpha(1 - \gamma)}{\alpha} \overline{w}$$

The wage is set as a mark-up on the income of an unemployed, since $\gamma + \alpha(1-\gamma) > \alpha \Leftrightarrow \gamma(1-\alpha) > 0$, which must hold.

Especially simple form in monopoly-union case, i.e. if $\gamma = 1$

Then $w = \frac{\overline{w}}{\alpha}$

We have:

$$\eta_{\rm w}^{\rm L} = \frac{1}{1-\alpha}$$

Hence:

$$1 - \alpha = \frac{1}{\eta_{w}^{L}}$$
$$\alpha = 1 - \frac{1}{\eta_{w}^{L}} = \frac{\eta_{w}^{L} - 1}{\eta_{w}^{L}}$$

Thus:

$$w = \left[1 - \frac{1}{\eta_{\rm w}^{\rm L}}\right]^{-1} \overline{w}$$

$$w = \frac{\eta_w^L}{\eta_w^L - 1} \overline{w}$$

Analogy to monopoly price setting with price as a mark-up over marginal cost

 $\eta_{_w}^{^{\scriptscriptstyle L}} > 1 \,$ is always the case with Cobb-Douglas production function,

as
$$\eta_w^L = \frac{1}{1-\alpha}$$
 and $0 < \alpha < 1$.

General equilibrium model

$$w_i = \frac{\gamma + \alpha(1 - \gamma)}{\alpha} \overline{w}$$

- Assume mobility in the labour market. An unemployed in a given firm (labour pool) can either find a job in another firm (labour pool) or become unemployed.
- Symmetric economy with a large number of firms.
- Look at wage-setting in firm *i*.
- Probability of getting a job in another firm = *l* = the economy-wide employment rate = employment/labour force.
- Probability of not finding a job elsewhere = 1-*l*.
- A worker who finds a job elsewhere receives the wage w.
- If unemployed, the worker receives the unemployment benefit *b*.

 \overline{W} = the expected income if not employed in firm *i* = alternative income

 $\overline{w} = \ell w + (1-\ell)b$

Hence:

$$w_{i} = \frac{\gamma + \alpha(1-\gamma)}{\alpha} \left[\ell w + (1-\ell)b \right]$$

In a symmetric equilibrium $w_i = w$

Denote the mark-up factor $\frac{\gamma + \alpha(1 - \gamma)}{\alpha} = m$

Then:

$$w = m [\ell w + (1 - \ell)] b$$
$$w = \frac{m(1 - \ell)}{1 - m\ell} b$$
(B)

- The wage is still a mark-up over the unemployment benefit as $m(1-\ell) > 1-m\ell \iff m>1$
- The overall wage in the economy, *w*, is positively related to employment as:

$$\frac{\partial w}{\partial \ell} = \frac{m(m-1)}{(1-m\ell)^2} > 0$$

w = f(l) is called a <u>wage-setting schedule</u>

It shifts upwards if:

- (1) γ**↑**
- (2) $b\uparrow$
- Equilibrium employment is given by intersection between the wage-setting schedule and the labour-demand schedule.
- Shift of labour-demand schedule affects the equilibrium employment rate.

Key question: How is the unemployment benefit determined?

- 1. Constant in real terms
- 2. Constant replacement rate r, so that b = rw

Constant replacement rate:

$$w = \frac{m(1-\ell)}{1-m\ell}b$$

$$w = \frac{m(1-\ell)}{1-m\ell} rw$$

$$1 = \frac{m(1-\ell)}{1-m\ell}r$$

$$\ell = \frac{1-rm}{m(1-r)}$$

$$\frac{\partial \ell}{\partial r} = \frac{m(1-m)}{(m-r)^2} < 0$$

- Vertical wage-setting schedule determined by labour-market institutions only (here *r* and γ)
- An increase in the replacement rate reduces the employment rate
- Shifts in labour demand have no effect on the equilibrium employment rate.

